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Abstract

Detecting and characterizing statistically significant signals in noisy
time series data can be achieved by optimizing a piecewise constant
model. A surprisingly simple algorithm implements this idea by find-
ing the partition of the observation interval that maximizes a model
fitness function. We present the algorithm and fitness functions for a
variety of data modes, including points, binned points, and measure-
ments at arbitrary times and with normal errors. This exact algorithm
has an inductive structure that allows either real-time or retrospective
analysis of time series. Examples are given to demonstrate time series
analysis, real-time triggers, and optimal histograms with bin size and
location determined by the data, not arbitrarily fixed ahead of time.

Key words: time series, data analysis, non parametric models, density

estimation, histograms

1



CONTENTS 2

Contents

1 Introduction: Block Segmentation 4

2 The Model: Piecewise Constant 5

3 Optimum Partition of an Interval 7

3.1 Data Cells . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Blocks of Cells . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Fitness of a Partition . . . . . . . . . . . . . . . . . . 11

3.5 Changepoints . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 A Lemma on Subpartitions . . . . . . . . . . . . . . . 12

3.7 The Algorithm . . . . . . . . . . . . . . . . . . . . . . 13

4 Block Fitness Functions for Sequential Data 15

4.1 Event Data . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Poisson Distributed Event Data . . . . . . . . . 20

4.1.2 0-1 Event Data: Duplicate Time Tags Forbidden 23

4.1.3 Time-to-Spill Data . . . . . . . . . . . . . . . . 25

4.1.4 Binned Event Data . . . . . . . . . . . . . . . . 26

4.2 Measurements with Normal Errors . . . . . . . . . . . 28

4.3 Distributed Measurements . . . . . . . . . . . . . . . . 31

4.4 Gaps and Mixed Data Modes . . . . . . . . . . . . . . 34

4.5 Prior for Number of Blocks . . . . . . . . . . . . . . . 35

5 Examples 38

5.1 Determination of the Parameter γ . . . . . . . . . . . . 38

5.2 Dynamic Range . . . . . . . . . . . . . . . . . . . . . 38

5.3 Point Data Time Series . . . . . . . . . . . . . . . . . 41



CONTENTS 3

5.4 Binned Data . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Histograms . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Measurements with Normal Errors . . . . . . . . . . . 48

5.7 Real Time Analysis: Triggers . . . . . . . . . . . . . . 50

6 Appendix A: MatLab Code 53

6.1 Main Program . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Construct Data Cells . . . . . . . . . . . . . . . . . . . 53

6.3 Global Optimum . . . . . . . . . . . . . . . . . . . . . 53

6.4 Load TTE Data . . . . . . . . . . . . . . . . . . . . . 53

6.5 Logarithm of the Posterior Probability . . . . . . . . . 53

6.6 Plot partitions . . . . . . . . . . . . . . . . . . . . . . 53

6.7 Plot TTE partitions . . . . . . . . . . . . . . . . . . . 53

6.8 Reverse (from WaveLab) . . . . . . . . . . . . . . . . 54

6.9 Maximum Likelihood Histogram: ml hist.m . . . . . . 55

7 Bibliography 58



1 INTRODUCTION: BLOCK SEGMENTATION 4

1 Introduction: Block Segmentation

We present an improved and generalized version of Bayesian Blocks

[Scargle 1998], a method of detecting and characterizing variability –

both random and deterministic [Scargle 1981] – in time series data cor-

rupted by observational errors. To start with, we introduce a simple

abstract representation appropriate for any sequential data. Further,

an exact method to find the global optimum partition of an interval re-

places the “greedy” algorithms of earlier work. And finally, we develop

new cost functions for a variety of data modes and based on maximized

likelihoods and posterior probability distributions. The resulting algo-

rithms are meant for exploratory data analysis and automated data

understanding. As will be discussed in a subsequent publication, this

entire framework is easily generalized to data of higher dimensionality,

such as images, photon maps, redshift surveys and the like.

A key goal is to impose as few prior conditions on the signal as pos-

sible. In particular, we wish to avoid smoothness or shape assumptions

that place a priori limitations on scales and resolution. The algorithm

should handle arbitrary sampling (i.e., not limited to evenly spaced,

gapless data) and large dynamic ranges in amplitude and scale. For sci-

entific data mining applications and for objectivity, the method should

be automatic. It should eliminate noise as much as possible, while

conserving most of the valid information in the data. It should be

applicable to multivariate problems. Incorporation of auxiliary, extrin-

sic data, such as spectral or color information, and variable exposure,

should be possible. It should be able to operate both retrospectively

(model of all the data after it is collected) and in a real-time fash-

ion that triggers on the first significant variation of the signal from its

initial value.
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Our algorithm achieves these desiderata in a simple computational

framework that is easy to use and represents the signal structure in a

form handy for further analysis, including the estimation of derivative

quantities of astrophysical interest. It includes an automatic penalty

for model complexity, thus solving the vexing problem often called

determining the order of the model. It is exact, not a greedy approx-

imation1 as in [Scargle 1998].

Its limitations include that it detects local, rather than global, struc-

ture, and while much faster than an explicit search of the exponentially

large parameter space, the runtime of the simple algorithm is O(N 2).

This computational complexity is considered prohibitive in some large

problems, but an effective way to reduce the time to ∼ NlogN is in

development.

These desiderata suggest the use of the most generic possi-

ble nonparametric data model, and have motivated our devel-

opment of data segmentation and Bayesian changepoint methods

[Ò Ruanaidh and Fitzgerald 1996]. It is remarkable that a very simple

idea – fitting of piecewise constant models to the data – achieves

essentially all of the above desiderata. This approach yields a step-

function, or segmented, representation of the signal in which the range

of the independent variable (e.g. time) is automatically divided into

unequal subintervals, in each of which the dependent variable (e.g.

intensity) is modeled as constant.

2 The Model: Piecewise Constant

As just indicated we are led to employ a very simple model, in which

the data interval is partitioned into segments (here called blocks) and
1An iteration making an optimal improvement at each step, but not guaranteed of an optimal overall solution.
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the signal is taken to be constant within each segment. The model

has three parameters for each block: the start time, the duration, and

the signal amplitude (e.g., the Poisson rate parameter for event data).

In the model of the full data interval the first two parameters are not

independent: one block begins where another leaves off. Specifically,

we represent these parameters in terms of a finite set of changepoints,

essentially one per block.

This representation is in the spirit of a nonparametric approxima-

tion, and not meant to imply that we believe the signal is actually dis-

continuous. The crude, blocky appearance of our discontinuous model

may be a liability in the context of visualization, but for our inter-

ests in deriving physically meaningful quantities we have not found

it so. Blocky models are useful in broad signal processing contexts

[Donoho 1994], and have several motivations. Their simplicity allows

exact treatment of the likelihood. We can optimize or marginalize the

rate parameters exactly, giving simple formulas for the fitness func-

tion. And we regard the estimated model itself as less important than

quantities derived from it. For example, while smoothed plots of pulses

within gamma-ray bursts make pretty pictures, one is really interested

in pulse locations, lags, amplitudes, widths, rise and decay times, etc.

These quantities can be accurately determined directly from the loca-

tions, heights and widths of the blocks.

Especially for applications in measuring similarity among time series

and pattern matching, piecewise linear models are often used (cf the

work of Heikki Mannila and Eamonn Keogh). Such models may have a

better visual appearance, but in our experience the improved flexibility

is largely offset by added complexity of the model and its interpreta-

tion. Note further that if continuity is imposed at the changepoints, a



3 OPTIMUM PARTITION OF AN INTERVAL 7

piecewise linear model has essentially the same number of parameters,

or degrees of freedom, as does the simpler piecewise constant model.

Below §3 discusses partitions of the data interval, a convenient data

representation scheme, and the new algorithm for computing optimal

partitions. Then §4 exhibits the computation of cost functions for a

variety of data modes, followed by numerical simulations and other

examples in §5.

3 Optimum Partition of an Interval

Our algorithm works on any sequential data. We introduce it in a

somewhat abstract setting because it can be used for other partitioning

problems beyond time series analysis. In a special case it implements

Bayesian blocks or other 1D segmentation ideas for any model fitness

function that satisfies a simple additivity condition. It improves on our

previous approximate segmentation algorithms by achieving a rigorous

solution of the multiple changepoint problem, and is guaranteed to find

the global maximum, not just a local one. This is made possible by

reducing the infinite search space to the finite set of partitions consisting

of blocks composed of discrete data cells.

3.1 Data Cells

The set of possible values of the independent variable is called the

data space. For the one dimensional case treated here, the data space

is usually an interval, such as the time over which observations have

been made. The measured quantity can be almost anything. Most

commonly it is either a physical variable or the density of discrete

events.
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Consider observational data comprising N sequential elements

xn, n = 1, 2, . . . , N. (1)

The specific meaning of the quantities xn is left vague because almost

any of a wide variety of data types can be treated within this for-

malism. Simple examples are: points, counts of points in bins, and

measurements – correspondingly, the array x would contain point co-

ordinates; counts, bin sizes and locations; and measured values and

their uncertainties, respectively. The only requirement is that the data

be ordered (i.e., sequential), meaning that each xn is associated with

a time tn, such that the latter are ordered and contained in some time

interval I :

min(I) ≤ t1 < t2 < . . . < tN ≤ max(I) . (2)

In general tn specifies the time of measurement, be it a point or an

interval. For event data (also called point data), tn is just the time

of event n. Although times are often represented as real numbers, the

finite accuracy of measurement means that one is really specifying an

integer multiple of some small unit of time (typically on the order of

milliseconds to microseconds in high energy astrophysics). For cases

such as binned counts or measurements averaged over finite time in-

tervals, the time interval must be specified, either explicitly (as in an

array giving the lengths of a series of unequal time bins) or implicitly

(e.g. through specification of bin size and time of the first bin).

It is convenient to represent sequential data with a data structure

consisting of a set of N data cells

Cn ≡ {xn, tn} n = 1, 2, . . . N , (3)

They form an ordered sequence with respect to the independent vari-

able t, can be grouped into blocks (§3.2) forming partitions of I (§3.3),
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and contain whatever data quantities are necessary to evaluate the fit-

ness (§3.4) of an arbitrary partition. In some cases two or more data

elements are combined into a single cell (see e.g. the discussion of du-

plicate time tags in §4.1), but for the most part data cells correspond

one-to-one with data elements. In some cases (e.g. time-tagged event

data) tn is contained in xn and need not be separately specified. Figure

1 is a cartoon of typical data cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32(a)

1 2 3 4 5

block 1
6 7 8 9 10 11 12 13 14 15 16 17

block 2
18 19 20

block 3
21 22 23 24 25 26 27 28 29 30 31

block 4
32

block 5

(b)

Figure 1: Pictorial representation of data cells and the blocks made from them. The horizontal
axis represents the independent variable (often, but not necessarily time), with respect to which
the data are ordered. The sequential order depicted in Panel (a) is the only essential requirement
for data to be analyzable with our block algorithm. Panel (b) exemplifies the partition of the
set of data cells into blocks. The shaded cells are changepoints marking the beginnings of the
blocks.

3.2 Blocks of Cells

A block is a set of adjacent cells. Panel (b) of Figure 1 shows a sequence

of 32 data cells divided into five blocks. The following notation for

blocks is useful:

B(n,m) ≡ {Cn, Cn+1, . . . Cm} , (4)
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that is m − n + 1 cells in sequence. The case m = n represents a

block consisting of just one cell, as in the last block of the partition in

Figure 1(b). The model of the time series data is segmented into blocks,

meaning that any model parameters are constant within each block but

undergo discrete jumps at the changepoints (§3.5) marking the edges of

the blocks. The fitness of a block is of elementary importance, because

the fitness of a partition (§3.4) is the sum of the fitness of the blocks

comprising it.

3.3 Partitions

A partition of the interval I is simply a set of non-overlapping blocks

that together add up to the whole interval.2 A partition can be de-

fined by specifying the number of blocks (the elements of the partition)

Nblocks, and the block edges nk:

P(I) ≡ {Nblocks, nk, k = 1, 2, 3, . . . Nblocks} . (5)

There are one fewer changepoints than blocks, since by convention the

first block begins at the first data cell – n1 ≡ 1 is implicit – and the

last block terminates with the last data cell. As described in §3.4 we

will seek the partition that maximizes a given function over all possible

partitions. How big is this search space if there are N cells? Establish

a 1-1 mapping between partitions and binary numbers of length N ,

by setting the k-th digit to 1 if cell k is a changepoint, 0 otherwise.

Remembering that the first cell is always a changepoint, the number

of partitions is then

Npartitions = 2N−1 (6)

2Formally a partition of I is a set of blocks satisfying I =
⋃

k Bk and Bj

⋂
Bk = ∅ (the null set), for j 6= k.
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Except for short time series this number is too large for an exhaustive

search, but our algorithm nevertheless finds the optimum over this

space in a time that scales as only N 2.

3.4 Fitness of a Partition

Since our goal is to model data, we maximize3 a quantity measuring

the fitness of models in a specified class. We take as this model class

all partitions of the interval, with a given statistical model for each

block of the partition. If the observational errors at different times are

independent, as is often the case, fitness is additive over blocks:

F [P(I)] =
Nblocks∑

k=1
f (Bk) , (7)

where F [P(I)] is the total fitness and f (Bk) is the fitness of block k.

Our algorithm depends explicitly on this additivity.

Specific examples and details of fitness functions are given below

in §4. What is important here is that we marginalize, or otherwise

eliminate, all parameters of the block models except the times defining

the beginning and end of the block (Paper V). Then the total fitness

depends on only P(I). The best model is found by maximizing F

over all partitions. As an example, the fitness function we adopt for

count data does not depend on the Poisson rate parameters – they can

be computed in an almost trivial way, once the changepoints of the

optimum partition are determined.
3Alternatively, one can minimize an error measure. Both are called optimization.
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3.5 Changepoints

We call the time separating two blocks a changepoint4. In principle

a changepoint could be anywhere in the interval, but we restrict them

to occur at the times corresponding to the data cells. The reasoning

is that moving a changepoint lying between two data cells to a new

location between the same cells does not sensibly change the model’s

representation of the data. This simplification reduces the search over

an infinite space to a finite optimization problem.

In some applications it might be useful to assign a data cell that is

a changepoint to be in both the subsequent and previous blocks, but

here we assign it to only one – with the convention that a changepoint

is the first cell in the subsequent block (rather than the last cell of the

previous block). Correspondingly, since the smallest partition consists

of a single block containing all data cells, the first data cell is always

a changepoint. If the last cell is a changepoint, it demarcates a block

consisting of that one cell, as in panel (b) of Figure 1, where the five

changepoints dividing the data cells into five blocks are shaded.

3.6 A Lemma on Subpartitions

We define a subpartition of a given partition P(I) is a partition (of a

subset of I) consisting of a subset of the blocks of P(I). Although not

a necessary condition for the lemma to be true, in all cases of interest

here the blocks in the subpartition are contiguous, and thus form a

partition of a subinterval of I . Below we will make use of this simple

result on subpartitions of optimal partitions:
4In statistics, a changepoint in a time series is a point at which the statistical model undergoes an abrupt

transition, usually by one or more of its parameters jumping to a new value
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Lemma: A subpartition of an optimal partition is

an optimal partition of the subset it covers.

Let P′ be the subpartition and I ′ the subset of I that it covers. If there

were a partition of I ′, different from and fitter than P′, then combining

it with the blocks of P not in P′ would, by the block additivity condition,

yield a partition of I fitter than P, contrary to the optimality of P.

Corollary: removing the last block of an optimal partition leaves an

optimal partition.

3.7 The Algorithm

We have assembled the definitions and results needed to state

our procedure and prove that it finds a global optimum parti-

tion. This algorithm is in the spirit of dynamic programming

[Hubert, Arabie, and Meulman 2001]. It begins with the first data cell,

adding one more at each step until the whole interval has been treated.

This feature makes the algorithm suitable for real-time applications

(see §5.7).

The proof is by mathematical induction: if a theorem is true for R =

1, and one can show that, if it is true for R then it is true for R+1, then

the theorem holds for all R. At step R the algorithm finds the optimum

partition of the interval comprised of data cells IR ≡ {C1, C2, . . . CR}.
To analyze all the data, take R = 1, 2, . . . N . The case R = 1 is trivial:

there is only one cell, and the only partition possible is the optimum

one.

Now suppose we have completed step R, having obtained the opti-

mal partition Popt[IR], hereafter abbreviated Popt(R), and are now at
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step R + 1 and wish to find the optimal partition Popt(R+1). Assume

further that we have kept a running record of the fitness of the optimum

partition obtained at each previous step (call this array best) and the

location of the last changepoint in that partition (call this array last).

It is straightforward to compute

M(r) ≡ f [B(r, R + 1)] (r = 1, 2, . . . R + 1) (8)

that is, the fitness of a putative last block starting at r and extending

to the end of the current interval. For example M(1) is the fitness of

the whole interval currently in play, namely the cells from 1 through

R + 1.

Using the block additivity of fitness, Eq. (7), the fitness of the

partition of IR+1 consisting of the optimum partition Popt[Ir−1] followed

by a single block B(r, R + 1) is:

A(r) = M(r) + { 0 r = 1
best(r − 1), r = 2, 3, . . . , R + 1 , (9)

Now comes the key reasoning step. While we don’t yet know what

it is, the new optimum partition Popt(R + 1) must exist and must have

a last changepoint, say r∗.5 From its definition A(r∗) is the fitness of

Popt(R + 1). In particular, best(r∗ − 1) is the fitness of the optimal

subpartition consisting of all but the last block of Popt(R + 1), and

M(r∗) is the fitness of said last block. Further, any partition with its

last changepoint at some other r 6= r∗ must have fitness not greater

than that of Popt(R + 1), so we have

A(r) ≤ A(r∗) for r 6= r∗ . (10)

In other words, the maximum of A(r) occurs at r∗:

r∗ = argmax[A(r)] , (11)
5Any finite combinatorial optimization problem has at least one solution. Also, all partitions have at least

one changepoint.
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so finding the fitness and last changepoint of Popt(R+1) is just a matter

of finding the maximum of the array A and the index r at which this

maximum occurs.

At the end of the computation, it only remains to find the locations

of the optimal changepoints. The needed information is contained in

the array last(r) in which we have stored the index r∗ at each step.

Using the corollary of the subpartition lemma, it is a simple matter

to use the last value in this array to determine the last changepoint

in P opt(N), peel off the end section of last corresponding to this last

block, and repeat. That is to say, the values

(1) cp1 = last(N)

(2) cp2 = last(cp1 − 1)

(3) cp3 = last(cp2 − 1)

. . .

are the index values giving the locations of the changepoints, in reverse

order. The positions of the changepoints are not necessarily fixed until

the very last iteration, although in practice it turns out that they

become more or less “frozen” once a few succeeding changepoints have

been detected.

The MatLab code for the algorithm in Appendix XX indicates how

all of these computations are implemented.

4 Block Fitness Functions for Sequential Data

Here we outline the computation of model fitness. The fitness func-

tion for a fixed block of data numerically evaluates how well a constant

signal strength represents whatever data lie in that block. The result-
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ing quantities for the blocks covering the data interval are combined to

form a fitness measure for the complete piecewise constant model.

For our algorithm to work, the total model fitness must depend on

only parameters which specify the locations of the block edges, i.e.

the changepoints. We must first account for, and eliminate, all other

parameters. In the basic model the parameters specifying the signal

strength for each block must be eliminated. The simplest way to do this

is to take block fitness to be the likelihood maximized over all values

of the signal strength. Another approach is to treat signal strength

as a nuisance parameter and marginalize it. In the latter case fitness

is not regarded as an absolute goodness-of-fit, but rather as a Bayes

factor. Both approaches yield a quantity assessing alternative piecewise

constant models for the fixed data.

Computation of fitness functions may be very different from case to

case, but the following features are common to all of the data modes

considered in this paper.

In all cases the fitness function depends only on the parameters

defining the error distribution of whatever measurements lie in the

block. For event data governed by the Poisson distribution (§§4.1,

4.1.4), there are exactly two such sufficient statistics: N , the number

of events in the block, and M , the length of the block. In other cases

(e.g. §4.2) the number of parameters depends on the form of the

distribution. In all cases treated here, the sufficient statistics for a

block are the sums of those for its cells. This relation simplifies the

computation, but is not essential to the algorithm.

Furthermore, the sufficient statistics are local quantities, defined only

for individual cells or blocks. In a sense we can ignore the actual

locations of the cells assigned to a block; In principle, the cells in a
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block need not even be contiguous. This for example allows a very

simple treatment of data gaps. Or the cells near the beginning and the

end of the interval might be assigned to the same block–for example, the

pre-burst and post-burst data from a gamma ray burst could combine

into a single block representing a constant background. An algorithm

explicitly allowing wraparound would be a natural way to deal with

this case. However, for most purposes it is convenient to impose cell

contiguity on the blocks, and our algorithm has this condition built in.

Finally, there are two types of factors in a fitness function that can

be ignored, for different reasons. First, a factor in the likelihood for

each data cell that does not depend on the rate parameter yields a

simple constant factor for the whole time series (namely the product

of the factor over all the data cells), independent of both the rate pa-

rameter and where the changepoints lie. Such a factor cancels out in

any explicit model comparison, and is irrelevant as well for the implicit

model comparison that takes place in our optimization algorithm. Sec-

ond, there are factors in the fitness function for each block that are

independent of the rate parameter. These factors do matter, but they

contribute to the log of the fitness function a term proportional to the

number of blocks, and as such can be absorbed into the parameter

derived from the prior on the number of blocks (cf. §4.5).

4.1 Event Data

Sometimes the physical process, or perhaps the way it is recorded,

takes the form a sequence of discrete events, each yielding a point in

the data space. (In practice, the coordinates of the points are inte-

ger multiples of some small but finite unit–and are thus discrete, not

continuous. This fact is important for the computations below.) The
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quantity of ultimate interest is the distribution function of the points,

interpretable as the intensity or probability density of some physical

variable. Accordingly the terms density estimation and rate estima-

tion are sometimes used. A key example is the case where the events

are the detection of individual photons, the corresponding points are

the measured detection times, and the quantity of interest is the radi-

ation intensity as a function of time.

For point data, it is natural to associate one cell with each event.

However, if the detector can detect two (or more) events that are si-

multaneous to within its timing accuracy, such pairs would be assigned

to the same cell. Since data cells must contain whatever information

is necessary to compute the fitness function of a block containing the

cells (§3.1), the data structure representing the cells must contain the

number of events assigned to the cell (most often 1) and the length of

the interval associated with the event.

There is more than one way to make such an association be-

tween sequential events and intervals. Perhaps most natural is to

assign to a point all times closer to it than to any other data

point. This resulting intervals join the midpoints between succes-

sive events. This concept generalizes to data spaces of any di-

mensions (where it is called the the Voronoi tessellation of the

data points, [Okabe, Boots, Sugihara and Chiu 2000, Scargle 2001a,

Scargle 2001c]), allowing finite partitions which adequately approxi-

mate the infinite set of arbitrary partitions.

Alternatively, one can use the intervals between successive data

points–assigning half of an event to the interval immediately to its left

and half to the one immediately to its right. This choice may handle

the onset of a steep gradient in the underlying density slightly better,
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and is also easily generalized to higher dimension where it is known as

the Delaunay triangulation [Okabe, Boots, Sugihara and Chiu 2000].

The algorithm described below allows use of either of these interval

schemes.

The analysis in §2.2.1 of [Scargle 1998] can be carried over largely

unchanged to the cell-based approach described here. But we offer

several extensions of that work. First, we develop a new class of fitness

functions based on maximizing the likelihood with respect to the rate

parameter, in contrast to marginalizing it as in computing the Bayesian

posterior. In addition, for the case where we compute the posterior we

consider a prior with a finite range, as opposed to the flat prior over an

infinite range. And we include variable bin size and exposure factors.

As mentioned above, and detailed in §2.2.1 of [Scargle 1998], assume

that there is an elementary quantum of time–a tick–set by the mea-

surement system. This is the finest time resolution the measurement

apparatus is capable of recording. Let nm be the number of events

(e.g. photons) detected in tick m. We consider two data modes. In

mode 1 the number of events in a given tick is presumed to follow a

Poisson distribution. Mode 2 corresponds to situations where detection

of more than one event at a given time is not possible, typically due

to the deadtime of the detector, so that the number of events in a tick

can be only 0 or 1. An example is time-tagged event (TTE) data in

which duplicate time tags are not allowed. The fitness functions for

the two modes, while similar, are different enough that the appropriate

one should be used in practice.
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4.1.1 Poisson Distributed Event Data

For mode 1, the likelihood for tick m is, from the Poisson distribution

Lm =
λnm e−λ

nm!
. (12)

The block likelihood is the usual product

L(k) =
Mk∏

m=1

λnme−λ

nm!
. (13)

where Mk is the number of ticks in block k. Simplifying and collecting

the factors for ticks with the same number of events, we have

L(k) = e−λMk ∞∏
n=0

(
λn

n!
)H(n) , (14)

where H(n) is the number of ticks in the block with n events. The

factor resulting from the factorial in the denominator is a constant, in-

dependent of the model, and therefore irrelevant for model comparison.

Dropping this factor, and noting that
∑∞

n=0 nH(n) = Nk, we have

L(k) = λNk
e−λMk

(15)

In this context it is often suggested that one should employ the inter-

vals between successive events, since they in some sense carry the rate

information more directly than do the actual times. We will now show

that the likelihood based on intervals is essentially equivalent to the

one above. It is a classic result [Papoulis 1965] that intervals between

independent events distributed uniformly in time with a constant rate

λ is exponential:

P (dt) = λe−λdtU(dt), (16)
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where U(x) is the unit step function:

U(x) = 1 x ≥ 0

= 0 x < 0

Pretend that the data consists of the inter-event intervals, and we do

not even know the absolute times. The likelihood of our constant-rate

Poisson model for interval dtn ≥ 0 is

Ln = λe−λdtn, (17)

so the block likelihood is

L(k) =
Nk∏

n=1
λe−λdtn = λNk

e−λMk
, (18)

This likelihood is the same as that in Eq. (15).

There are two ways to proceed. The first is to find the maximum of

this likelihood as a function of λ, which is at λ = Nk

Mk , so we have

Lmax = (
Nk

Mk
)N

k
e−Nk

(19)

The log of this expression,

logLmax = Nk(log Nk

Mk − 1) , (20)

is the maximum likelihood fitness function for event data following a

Poisson distribution.

In the other approach, we marginalize the likelihood in Eq. (15)

with the finite-range constant prior, giving

P =
1

λ2 − λ1

∫ λ2

λ1
λNk

e−λMk
dλ (21)
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yielding

P =
1

λ2 − λ1

1

(Mk)Nk+1

∫ z2

z1
zNk

e−zdz (22)

where z1,2 = Mkλ1,2. In terms of the incomplete gamma function

γ(a, x) ≡
∫ x

0
za−1e−zdz (23)

this is

P = 1
λ2−λ1

1

(Mk)N
k+1

[ γ(Nk + 1, z2)− γ(Nk + 1, z1) ] . (24)

The unnormalizable flat prior that extends to infinity gives

P = 1

(Mk)N
k+1

Γ(Nk + 1) , (25)

differing slightly from Eq. (29) of [Scargle 1998] only because of differ-

ent priors for λ.

Another commonly used prior is the so-called conjugate Poisson dis-

tribution

P (λ) = C λα−1e−βλ . (26)

As noted by [Gelman] this “prior density is, in some sense, equivalent

to a total count of α-1 in β prior observations” a relation that might

be useful in some circumstances. The normalization constant C = βα

Γ(α)

will be ignored. With this prior the marginalized posterior probability

is

P =
∫ ∞
0

λN (k)+α−1e−λ(M (k)+β)dλ , (27)

or

P = Γ(N (k)+α)

(M (k)+β)N
(k)+α

(28)

Note that this prior and posterior reduce to those in Eqs. (28) and

(29) of [Scargle 1998] for α = 1, β = 1.
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Equations (20), (24), (25) and (28) are the forms to be used whenever

the counts in each tick follow the Poisson distribution. This includes

both time-tagged data where duplicate tags are permitted and, as we

will see below in §4.1.4, binned data.

Recently [Prahl 1996] has derived a statistic for event clustering in

Poisson process data that tests departures from the known interval

distribution (see the discussion above), by evaluating the likelihood

over a restricted interval range. Prahl’s statistic is

MN =
1

N

∑

∆Ti<C∗
(1− ∆Ti

C∗ ) , (29)

where ∆Ti is the interval between events i and i + 1, and

C∗ ≡ 1

N

∑
∆Ti (30)

is the empirical mean interval. In other settings, the fact that this

statistic is a global measure of departure of the distribution (used here

only locally, over one block) may be useful in the detection of periodic,

and other global, signals in event data. Results using the Prahl statistic

are given below in §5.

4.1.2 0-1 Event Data: Duplicate Time Tags Forbidden

In this mode duplicate time tags are not allowed, the number of events

detected at a given tick is 0 or 1, and the corresponding tick likelihood

is:

Lm(λ) = e−λ = 1− p nm = 0 (31)

= 1− e−λ = p nm = 1 (32)

where λ is the model event rate. From the Poisson distribution p =

1−e−λ is the probability of an event, 1−p = e−λ that of no event. We
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can therefore use p or λ interchangeably to specify the event rate. Since

independent probabilities multiply, the block likelihood is the product

of the tick likelihoods:

L(k) =
Mk∏

m=1
Lm = pNk

(1− p)M
k−Nk

(33)

where Mk is the number of ticks in block k and Nk is the number of

events in the block.

There are again two ways to proceed. The maximum of this likeli-

hood occurs at p = Nk

Mk and is

Lmax = (
Nk

Mk
)N

k
(1− Nk

Mk
)M

k−Nk
(34)

Using the logarithm of the maximum likelihood,

log(Lmax) = Nklog(Nk

Mk ) + (Mk −Nk)log(1− Nk

Mk ) (35)

yields the additivity needed for our cost function.

An alternative way to quantify the fitness of the class of constant

models to marginalize the rate parameter. That is to say, we remove

this parameter by integrating it out:

P (Bk) =
∫

L(k)P (λ)dλ , (36)

where P (λ) is the prior probability distribution for the rate parameter.

Here we adopt a generic prior that is consistent with not having any

particular prior information about the event rate, except that it must

be positive. In [Scargle 1998] we used p as the independent variable,

and chose a prior flat (constant) as a function of p. Here, we use a

prior flat as a function of the rate parameter:

P (λ) = 1
λ2−λ1

λ1 ≤ λ ≤ λ2 (37)

= 0 otherwise (38)
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The posterior, marginalized over λ is then:

P =
1

λ2 − λ1

∫ λ2

λ1
(1− e−λ)N

k
(e−λ)M

k−Nk
dλ . (39)

Changing variables to p = 1 − e−λ, with dp = e−λdλ, this integral

becomes

P =
1

λ2 − λ1

∫ p2

p1
pNk

(1− p)M
k−Nk−1dp , (40)

with p1 = 1 − e−λ1 and p2 = 1 − e−λ2, expressible in terms of the

incomplete beta function

B(z; a, b) =
∫ z

0
ua−1(1− u)b−1du (41)

as follows:

P = 1
λ2−λ1

[B(p2; N
k + 1,Mk −Nk)−B(p1; N

k + 1,Mk −Nk)] .

(42)

The incomplete beta function reduces to the ordinary beta function

for z = 1, so for the infinite range case λ1 = 0, λ2 = ∞; p1 = 0, p2 = 1

we have

P∞ = B(Nk + 1,Mk −Nk) , (43)

differing from Eq. (21) of [Scargle 1998] by one in the second argument,

due to the difference between a prior flat in p and one flat in λ. All

of the equations (35), (42), and (43), in their logarithmic form, can be

used as fitness functions in the global optimization algorithm, and will

be demonstrated below.

4.1.3 Time-to-Spill Data

As discussed in §2.2.3 of [Scargle 1998], reduction of the necessary

telemetry rate is sometimes accomplished by recording only the time
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of detection of every Sth photon, e.g. with S=64 for the BATSE time-

to-spill mode. This data mode has the attractive feature that its time

resolution is greater when the source is brighter (and possibly more ac-

tive, so that more time resolution is useful). The likelihood in Eq. (32)

of [Scargle 1998] simplifies, with slightly revised notation and using the

fourth comment at the beginning of this section, to

L
(k)
TTS = λSNspillse−λM (44)

where Nspills is the number of spill events in the block, and M is as

usual the length of the block. With N = NspillsS this is identical

to the Poisson likelihood in Eq.(15), and in particular likelihood is at

λ =
NspillsS

M and the corresponding cost function is

logL
(k)
max,TTS = SNspills(log

NspillsS

M
− 1) (45)

just as in Eq. (20) with N = SNspills, and with the same property

that the unit in which block lengths are expressed is irrelevant.

4.1.4 Binned Event Data

One of the most common data modes consists of counts in bins. The

bins are typically predefined intervals in the measured variable. The

count Nn in bin n is simply the number of values in it. The data cells

are simply the bins and their associated counts:

Cell n ≡ {bin n,Nn}, n = 1, 2, . . . , Ntotal. (46)

Absent correlation effects, such as dead time, the probability distribu-

tion for the number of events of a bin is Poisson, and this data mode is

equivalent to that discussed above in §4.1.1, with the bins taking the

role of the ticks of that section. Here we generalize these results (and
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those in [Scargle 1998]) in two ways, allowing unequal bin sizes and a

variable efficiency factor. The latter, sometimes called exposure, refers

to anything that affects the count (e.g. instrumental sensitivity, dwell

time, or uncorrected atmospheric effects). Assume that, whatever the

nature of the effect, it can be represented by an efficiency factor be-

tween 0 and 1, such that the effective Poisson event rate is E times

the actual (observed or modeled) event rate. Because of the nature of

our piece-wise constant Poisson model, these two effects–bin size and

bin efficiency–are equivalent in simply altering the local event rate, and

can be represented with a single parameter equal to the product of the

bin’s width and efficiency.

The likelihood for bin n is found from the Poisson distribution:

Ln =
(λEnWn)Nne−λEnWn

Nn!
(47)

where λ is the actual event rate, in counts per unit time, and Nn is the

number of events in the bin. The bin width Wn is expressed in the same

units as λ−1. The efficiency factor En is averaged over the bin. The

product WnEn can be replaced with a single quantity, wn ≡ WnEn,

expressing relative bin efficiencies.

The likelihood for block k is the product of the likelihoods of all its

bins:

L(k) =
M (k)∏

n=1
Ln = λN (k)

e−λw(k)
. (48)

Here M (k) is the number of bins in block k,

w(k) =
M (k)∑

n=1
wn (49)
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is the sum of the bin efficiencies in the block, and

N (k) =
M (k)∑

n=1
Nn (50)

is the total event count in the block. We have discarded the factor

(EnWn)Nn/Nn! in Eq. (47) because, when multiplied out over all blocks

in any model it produces a model-independent factor–its product over

all bins. Any such common factor is irrelevant for model comparison.

Note that the block likelihood is essentially the same as that of

Eq. (15). The only difference is that what we called a tick is now

called a bin, and we have allowed for a bin efficiency factor (which in

principle could be applied to ticks). Hence the maximum likelihood

and marginal posterior cost functions to be used here are the same

as those of Equations (20) (24), (25) and (28), with M (k) interpreted

as the block-sum of the wn instead of just the number of ticks in the

block.

4.2 Measurements with Normal Errors

Here is a very common signal processing scenario: in order to estimate

a signal embedded in noise, one makes measurements at a sequence

of times. For example, if the noise is additive one has this nearly

ubiquitous model for the time series observations:

xn ≡ x(tn) = f (tn) + zn n = 1, 2, . . . N , (51)

where f is the unknown signal, z is the noise, and the observations

times tn may be evenly spaced or otherwise. We here consider the

case where the noise is assumed to be normally distributed and with a

known variance:

P (zn|σn) =
1

σn

√
2π

e−
1
2( zn

σn
)2 (52)
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The data cell then is denoted

Xn = {xn, tn, σn} n = 1, 2, . . . , N , (53)

where xn is the value measured at time tn, and σn is the standard

deviation of the noise.

In a block where the true signal is λ, the likelihood of measurement

n is then

Ln =
1

σn

√
2π

e−
1
2(xn−λ

σn
)2 (54)

and the entire likelihood for block k is

L(k) =
∏

n

1

σn

√
2π

e−
1
2(xn−λ

σn
)2 (55)

where the product is over all n such that tn falls within the block. The

exponential is the only factor that matters, since the rest contributes

to the total posterior probability the constant factor

(2π)−
N
2

∏N
n=1 σn

, (56)

where here the product is over all N data points. Hence the block

likelihood can be written

L(k) = e−
1
2

∑
n(xn−λ

σn
)2 (57)

The maximum of this likelihood is found as follows: Clearly we can

just as well minimize the quantity

Q(λ) =
1

2

∑

n
(
xn − λ

σn
)2 , (58)

which can be done by setting its derivative to zero:

dQ(λ)

dλ
= −∑

n
(
xn − λ

σ2
n

) (59)



4 BLOCK FITNESS FUNCTIONS FOR SEQUENTIAL DATA 30

so that

λmax =

∑
n(xn

σ2
n
)

∑
n( 1

σ2
n
)

(60)

Letting ρn = 1
σ2

n
be the weight corresponding to the variance of mea-

surement n, and putting the resulting expression

λmax =
∑

n ρnxn
∑

n ρn
(61)

into the log of Eq. (57), we have

logP = −1

2

∑

n
ρn(xn −

∑
n ρnxn
∑

n ρn
)2 (62)

logP = −1

2

∑

n
ρn[x2

n − 2xn

∑
n ρnxn
∑

n ρn
+ (

∑
n ρnxn
∑

n ρn
)2] (63)

logP = −1

2
[
∑

n
ρnx

2
n − 2

(
∑

n ρnxn)2
∑

n ρn
+

(
∑

n ρnxn)2
∑

n ρn
] (64)

logP = −1

2
[
∑

n
ρnx

2
n −

(
∑

n ρnxn)2
∑

n ρn
] (65)

logP = −1
2[x̄

2 − x̄2
∑

n ρn
] (66)

This expression is related to the weighted variance, although there

seems to be no universal choice for how to define same. But it makes

sense that the block cost function is this variance: the best constant

model for the block should have minimum variance.

As in the other cases, we can alternatively marginalize λ, by choosing

the flat, unnormalizable prior

P (λ) = constant (67)
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yielding for the marginal posterior

P (Bk) =
∫ ∞
−∞ e−

1
2

∑
n(xn−λ

σn
)2 dλ (68)

Setting

ak =
1

2

∑

n

1

σ2
n

(69)

bk = −∑

n

xn

σ2
n

(70)

and

ck =
1

2

∑

n

x2
n

σ2
n

(71)

we have

P (Bk) =
∫∞
−∞ e−

1
2(akλ2+bkλ+ck) dλ (72)

=
√

π
ak

e
(

b2k
4ak

)−ck (73)

The total posterior is of course

P =
∏

k
P (Bk) (74)

or, in terms of the additive log-posterior, we have

logP =
∑

k logP (Bk) =
∑

k[−1
2log(ak) + (

b2k
4ak

)− ck] (75)

where the sum is over all blocks, k. This expression is defines a practical

cost function for normally distributed data, as will be demonstrated

below.

4.3 Distributed Measurements

The data can also consist of measurements of a quantity, averaged over

a range of values of t – not at discrete point, as in the previous section.
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An good example is the spatial power spectra computed from mea-

surements of the cosmic microwave background radiation [refs.], where

the different experiments have widely different window functions (the

term used to describe sensitivity as a function of the independent vari-

able – i.e., spatial harmonic number in the CMB case). In this case the

data array could consist of the structure in Equation (53) augmented

by the inclusion of a window function, indicating the variation of the

instrumental sensitivity:

x = {xn, tn, wn(t− tn)} n = 1, 2, . . . , N , (76)

where wn(t) describes, for the value reported as Xn, the relative weights

assigned to times near tn, and all other quantities are as in Eq. (53).

This is a nontrivial complication if the window functions overlap,

but can nevertheless be handled with the same technique.

We assume the standard piece-wise constant model of the underlying

signal, that is, a set of contiguous blocks:

B(x) =
Nb∑

j=1
B(j)(x) (77)

where each block is represented as a boxcar function:

B(k)(x) = { Bj ζj ≤ x ≤ ζj+1
0 otherwise (78)

the ζj are the changepoints, satisfying

min(xn) ≤ ζ1 ≤ ζ2 ≤ . . . ζj ≤ ζj+1 ≤ . . . ≤ ζNb
≤ max(xn) (79)

and the Bj are the heights of the blocks.
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The value of the observed quantity, yn, at xn, under this model is

ŷn =
∫
wn(x)B(x)dx

=
∫
wn(x)

∑Nb
j=1 B(j)(x)dx

=
∑Nb

j=1
∫
wn(x)B(j)(x)dx

=
∑Nb

j=1 Bj
∫ ζj+1
ζj

wn(x)dx

(80)

so we can write

ŷn =
Nb∑

j=1
BjGj(n) (81)

where

Gj(n) ≡
∫ ζj+1

ζj
wn(x)dx (82)

is the inner product of the n-th weight function with the support of

the j-th block. The analysis in [Bretthorst 1988] showns how do deal

with the non-orthogonality that is generally the case here.6

[Note: the following repeats some of the above, and therefore needs

to be rewritten.]

The averaging process in this data model induces dependence among

the blocks. The likelihood, written as a product of likelihoods of the

assumed independent data samples, is

P (Data|Model) =
∏N

n=1 P (yn|Model) (83)

=
∏N

n=1
1√
2πσ2

n

e−
1
2(yn−ŷn

σn
)2 (84)

=
∏N

n=1
1√
2πσ2

n

e−
1
2(

yn−
∑Nb

j=1 BjGj(n)
σn

)2 (85)

= Qe−
1
2(

yn−
∑Nb

j=1 BjGj(n)
σn

)2 , (86)
6If the weighting functions are delta functions, it is easy to see that Gj(n) is non-zero if and only if xn lies in

block j, and since the blocks do not overlap the product Gj(n)Gk(n) is zero for j 6= k, yielding orthogonality,∑
N Gj(n)Gk(n) = δj,k. And of course there can be some orthogonal blocks, for which there happens to be

no“spill over”, but these are exceptions.
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where

Q ≡ N∏

n=1

1
√
2πσ2

n

. (87)

After more algebra and adopting a new notation, symbolized by

yn

σ2
n

→ yn (88)

and
Gk(n)

σ2
n

→ Gk(n) , (89)

we arrive at

logP ({yn}|B) = Qe−
H
2 , (90)

where

H ≡ N∑

n=1
y2

n − 2
Nb∑

j=1
Bj

N∑

n=1
ynGj(n) +

Nb∑

j=1

Nb∑

k=1
BjBk

N∑

n=1
Gj(n)Gk(n) .

(91)

The last two equations are equivalent to Eqs. (3.2) and (3.3) of

[Bretthorst 1988], so that the orthogonalization of the basis functions

and the final expressions follow exactly as in that reference.

4.4 Gaps and Mixed Data Modes

In some cases there are subintervals over which no events are possible

(e.g. gaps due to failures in the detector system). What matters is

the “live time” during the block, and this is simply the sum of the cell

lengths. Thus data gaps can be handled by ignoring them! The only

subtlety lies in interpreting what the model implies if a block extends

across a gap. For each block the procedure yields the optimum rate

parameter for whatever data lies in the block, ignoring any gaps. At

the end of the procedure, for display purposes the gaps can be restored
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and plotted, preferably with some indication that rates within gaps are

more uncertain.

Only if the fitness function depends on the total length of the block,

and not just the live time, do the lengths of the overlap between the

block and these gaps need to be included. The only example of this

we have encountered results from the adoption of a prior distribution

of block width.

Furthermore, one can even mix data modes. E.g., bins of arbitrary

sizes can be combined with point data. As with gaps the only burden

for doing this is placed on the fitness function, which in this case would

have to include a provision for data of mixed modes falling within

the block. An example of this would be the analysis of both binned

and time-tagged event (TTE) data for gamma-ray bursts observed by

BATSE.

Which of the several posteriors above should be used? Should a

new fitness function be constructed, based on ones understanding of

the data and potential signals? If the conjugate prior is used, what

values of its two parameters should be used? The answers depend on

what is known about the data and its errors, as well as what one wants

to assume about the signal. To aid in making such choices, §5.4 has

relevant examples.

4.5 Prior for Number of Blocks

In our earlier work [Scargle 1998] no explicit prior probability was as-

signed to Nblocks, the number of blocks (or equivalently the number

of changepoints). This omission amounts to using a flat prior, but in

many contexts it is unreasonable to assign the same prior probability

to all values. In particular, in most settings Nblocks << N is a priori
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much more likely than Nblocks ≈ N .

For this reason it is desirable to impose a prior that assigns smaller

probability to a large number of blocks. Using a geometric prior for

this parameter [Coram 2002] amounts to

P (Nblocks) = P0γ
−Nblocks . (92)

The prior chosen affects the number of blocks in the optimal represen-

tation, a quantity of considerable importance since it affects the visual

appearance of the representation and quantities derived from it. Most

importantly, statistical fluctuations can be represented as real if large

numbers of blocks are favored too much. While it is not a smooth-

ing parameter as such, the effect of increasing γ can be mistaken for

smoothing.

The form in Eq. (92) is not the only prior possible, but it is very

convenient to implement, since with the fitness equal to the log of

the posterior, one only needs to subtract the constant log γ from the

fitness of each block. Below in examples we show how the value of γ

can be determined, and demonstrate that, especially with good signal-

to-noise, the block representation is not very sensitive to the precise

value adopted.

Figure 2 is the result of a simulation study using BATSE TTE data.

The block decomposition of the full set of photons was taken as the

(relative) truth and compared with decompositions based on a random

subsample of the events. The RMS difference was taken as the mea-

sure of error, as a function of log γ (the abscissa in the figure). This

procedure is analogous to standard crossvalidation methods.

The effect7 of log γ in this and other simulations seems to level off
7A large value of this parameter naturally has the effect of reducing the number of blocks, producing a block

representation that has less structure – giving a smoother visual appearance. But the parameter is not explicitly
a smoothing parameter.
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Figure 2: Simulation study for the parameter γ. The dashed curve with circles is for the first
110 busrts in the TTE sample, and the solid green curve with squares is for the complete sample
of 1320 bursts, with DISCSC data.

at around 6. We have adopted the value 8 in the examples shown here.

A simple argument, due to Mike Nowak, yields γ ≈ N , where N is the

number of data points.

These results are given not as a universal result for γ but because

the general shape of the curve in Fig. 2 does seem characterestic of

a wide variety of situations. We recommend that persons using the

algorithm carry out simulations of this kind to study the behavior of

the algorithm as a function of γ for their application.
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5 Examples

This section presents results using the algorithms given in the Appendix

on various sample data sets.

5.1 Determination of the Parameter γ

In applications, one must specify the prior for the number of blocks.

The convenient geometric prior described in §4.5 amounts to the as-

sumption that the prior probability of k +1 blocks is a constant factor,

namely 1
γ , times that for k blocks. Values of γ > 1 express the no-

tion that a small number of blocks is a priori more likely than a large

number.

In principle, the value of γ depends on one’s prior knowledge of the

number of blocks, but in applications it is rare that one can express

this knowledge simply. In this section we perform block analysis of

synthetic data where, knowing the correct answer, we can determine

the best value.

5.2 Dynamic Range

One of the goals listed in §1 was that the algorithm have a large dy-

namic range. Here we give an example meant to demonstrate the

dynamic range in both time and amplitude. The synthetic signal is

a single block superimposed on a constant background, and the data

are a set of points drawn from a distribution with the corresponding

shape. The value log(γ) = 8 was used, and we adjusted the number of

events in the spike to be as small as possible and still detect the spike.

The errors in the block edges (-4 and +17 microseconds) are just per-

ceptible in the figure. For as few as 4 events the spike was detectable
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Figure 3: Maximum likelihood segmentation of a synthetic spike: 8 events in .0001 second on
a background of 2000 events over the unit interval, only a small fraction of which is plotted.
The solid lines at the top of the figure indicate the edges of the actual block; the dotted lines
are the two changepoints of the optimal segmentation. The actual points are shown just below
the histogram of the raw counts.

only by making log(γ) = 4, and with larger errors.

The next figure depicts a segmentation analysis meant to demon-

strate the ability of the algorithm to handle a signal that has a large

dynamic range in amplitude. The signal consists of three adjacent

blocks on a small, constant background. The middle block has a much

smaller amplitude, and the goal is to see if the near presence of large

spikes on either side affects its edges. The rates in the spikes are roughly

a million times the background rate and several thousand times the rate

of the central satellite block. The dotted lines near the top signify the
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estimated block edges, or changepoints, whereas the solid lines denote

the actual edge locations. The errors in the four edge locations are all

less than 10−8 seconds. Our method is essentially impervious to large

amplitude differences within a signal. In fact, increasing the number

of counts in the main spikes in this example would only enhance the

determination of the edges.
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Figure 4: Maximum likelihood segmentation of a set of block with a large range of amplitudes.
Each block has a width of 200 microseconds, with 100,000, 50, and 200,000 events, respectively,
while the background consists of 1,000 events over the full 1 second interval analyzed. The
central block and background are almost imperceptible on the scale of the figure. The analysis
parameters are the same as in Fig. 3



5 EXAMPLES 41

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Poisson ML

Bernoulli, ML

Bernoulli, Improper Prior

Bernoulli, Finite Prior

log(gamma)

M
ea

n
 E

rr
o

r

Figure 5: Simulation study, to find optimum value of the parameter logγ.

5.3 Point Data Time Series

This algorithm was originally developed with the BATSE TTE data

in mind. Paper V used the greedy approach, which not only is not

guaranteed to achieve the global optimum, but the iterative process

that implements the greedy optimization requires a stopping criterion

based on the adoption of a threshold. Even though it is possible to

choose well-justified values for the threshold, this nevertheless repre-

sents an undesirable ambiguity. It is one of the nice features of the

current algorithm that there is no such threshold.

Figure 6 shows the optimal block decompositions of data for a γ-ray
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Figure 6: Optimal partitions of BATSE TTE data for Trigger 0551. All photons were used in
the top panel; the others are based on the smaller number of photons detected in each of the
four BATSE energy channels.

burst based on the point data comprising the TTE data for BATSE

trigger 0551 (reference). The value log10(γ) = 8 was used for the

parameter in the prior. This analysis is based on the first 14, 000

photon time tags for this burst. The full data set consists of 28, 904

photons, but the last half is essentially background. Since the data are

time tagged events, we used the form of the posterior given in Equation

TBD. Need to compare duplicates allowed with not allowed.

Figure 7 shows the TTE data summed over all four energy channels,

analyzed with four different values of the prior parameter log10 γ. The

first panel corresponds to a flat prior, giving too much prior probability

to large numbers of changepoints. The obvious symptom is the appear-
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Figure 7: Optimal partitions of BATSE TTE data for Trigger 0551. Same as the first panel of
Figure 3, except that four different values of log10γ were used: 0, 2, 4 and 8

ance of many short spikes, corresponding to narrow intervals in which

statistical fluctuations are elevated by the inappropriate prior into ap-

parent significance. While they represent putative features that are

probably not real, and are cosmetically obnoxious, these spikes would

not much affect the values of parameters derived from the curve.

The second panel, with a prior that gives lower weight to large

numbers of changepoints has fewer spikes. By the time one reaches

log γ = 4, there is little change in the representation (cf. Figure 11).

This result is not necessarily universal, but the figures shown here in-
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dicate that the value log γ = 8 is quite reasonable and that values

somewhat lower or higher would not make any real difference in the

final representation.

5.4 Binned Data

Figure 5 shows the block representation for a portion of the light curve

of the first burst in the BATSE catalog, observed on April 21, 1991,

Trigger 0105. These data are available [BATSE www site] 8 in binned

format, with larger bins at the beginning, transitioning to smaller bins

at the fiducial trigger time.

The three panels in the figure are for different values of the prior

parameter log γ . The first case, log γ = 0, corresponds to a flat prior.

With this rather strong encouragement for a large number of blocks,

it is seen that the block representation is identical to the raw binned

data. Even the coarse pre-trigger bins that seem to be combined into

large blocks because their event rates are so similar, are represented as

separate blocks.

The second panel, log γ = 8, corresponds to the best choice for the

parameter, and can here be taken as the best block representation of

these data. The last panel, log γ = 16, corresponds to too much of

a penalty against a large number of blocks. One notes that the most

intense peak, which is resolved into two peaks in the other panels, is

here a single peak.

Finally, for comparison in Figure 6, we show analyses of the same

data, unbinned and binned, for Trigger 0551. This figure was created
8BATSE continuously recorded data in time bins 1.024 seconds long, and the time series posted on the web

has 116 seconds of such low-resolution data pre-pended to the 16 times higher (64 millisecond bins) resolution
data starting at the fiducial trigger time. To make the bins equal, the numbers given on the web site apportion
the counts in each large bin into 16 small bins. Since our analysis can handle unequal bins, we have undone
this, and reconstructed the actual integer counts in the larger bins.
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Figure 8: BATSE Trigger 0551. Top: TTE data. Bottom: same data, binned into 256 bins.

with the MatLab code included in the Appendix and available elec-

tronically. Note that the results are nearly identical, except for details

of the first pulse.



5 EXAMPLES 46

5.5 Histograms

Histograms are perhaps the most used form of density estimation. Typ-

ically, bins are chosen somewhat arbitrarily, or perhaps large enough to

have a ”good sample,” and to be equal in size, a choice that does not

allow greater resolution where the data warrant it. The approach to

this problem given here invokes the same procedure as described above

for estimating optimal piecewise constant representations of point data.

Unless the measurements are not independent of each other, the fitness

functions derived above for point data are appropriate for histograms,

which are by definition counts of events in intervals, and are governed

by the Poisson distribution.

Often the data analyst is presented with a set of measurements, with

little or no information about the measurement errors. In particular,

the smallest measurable difference or quantum of the measurement

(§4.1) is unknown. In such cases the maximum likelihood fitness func-

tion in Eq. (20) is appropriate, because its invariance property makes

specification of scale of the measured variable or its quantum unneces-

sary.

The only item unspecified is then the prior on number of blocks

(bins). Figure (9) depicts the results of a series of block determinations

of synthetic data consisting of data distributed by a Poisson process

which changes rate at known locations. The error of the representa-

tion can be readily computed by comparing the number and location

of the actual and estimated changepoints, with the result that the op-

timum value of the parameter log(γ) in the geometric prior can be

determined. This kind of study is only valid for the specific problem

simulated, but it is reasonable to assume that the results would not be

drastically different for other situations. It is natural that the optimum
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parameter depend on the number of data points, and the figure shows

the corresponding relationship.

The Matlab code provided in the appendix is essentially the same

as that for point data, only with the natural choices for certain pa-

rameters hard-wired into the code. This is meant to be a turn-key

algorithm for histograms, including a standard or recommended choice

for the parameter log10γ. Note that the algorithm, however, allows

this parameter to be readily changed. It is recommended that any use

of this algorithm be accompanied with experiments to determine how

sensitive the results for that particular problem are to this parameter.

The Bayesian scheme in [Knuth 2004] for obtaining the optimal num-

ber of bins has a similar flavor to the current work, except that the bins

are constrained to be equal in size. Another way to relax this constraint

is to compute what are sometime called equal-height or fixed-height

histograms – that is, demand that each bin contain the same number

of data points. This of course leave the question of what this number

should be. The current approach is meant to provide a principled way

to assign bin sizes and locations as directed by the data, rather than

by an ad hoc procedure.
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Figure 9: Simulation study: Optimum values of the prior parameter log10γ as a function of
the number of data points N . 100 realizations were analyzed with a range of values of log10γ;
for each case, the optimum was chosen as that yielding the smallest error in the number and
location of the bins. Different symbols are for signals with two, three, and four bins. The dotted
line is a linear fit to the data for the latter two cases. A similar set of simulations carried out
for the null case (a constant Poisson rate) are shown in the solid lines giving the value of log10γ
that gives false alarms less than 10%, 20%, and 50% of the time.

5.6 Measurements with Normal Errors

First consider a simulation consisting of measurements at arbitrary

times in an interval. These variates are taken to be zero-mean-normal,

except over an unknown sub-interval where the mean is instead an

unknown nonzero constant. Figure 10 shows synthetic data for three

simulated realizations with different values for this constant. The solid

line is the Bayesian blocks representation, using the posterior in Eq.

(75). For the smallest amplitude (first panel), no changepoints are
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Figure 10: One hundred normally distributed measurements – zero-mean (circles) except for
points 25-75 (squares), where the means are 0.2, 1.0 and 2.0 in units of the Arias-Castro et al.
threshold

√
2 logN . The dashed lines indicate the true changepoints and block amplitudes,

and the solid lines are the Bayesian block representations.

found and so the signal is completely missed. In the next panel, the

solution is correct except that the second changepoint is one point

too early, while the solution in the third panel gets both changepoints

correct.

In this experiment the points are evenly spaced, but only their order

matters, so the results would be the same for arbitrary spacing of the

data points.

A recent paper [Arias-Castro, Donoho and Huo 2003] on multiscale

methods discusses essentially the same problem and develops several

theorems for the aysmptotic behavior of optimal detectors of such sig-

nals. To quote these authors, “In short, we can efficiently and reliably

detect intervals of amplitude roughly
√

2logN , but not smaller.” Fig-
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Figure 11: Relative error in finding a single block. Abscissa: True block amplitude in units
of Arias-Castro et al.’s threshold amplitude. Ordinate: Error measures described in the text.

ure 4 reports some results of detection of the same normally distributed

step-function process shown in Figure 10. The solid lines show the root-

mean-square residuals from the true function, while the dashed line

This figure generally confirms this theoretical result, since the errors

(both and a measure of the errors in the number and location of the

changepoints) are

5.7 Real Time Analysis: Triggers

In many astronomical applications the task is to detect the moment

when a signal rises above a presumed constant, or slowly varying, back-

ground level. The data stream usually consists of time-tagged or pre-
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binned events. This detection problem is typically addressed by setting

one or more event-rate thresholds. A signal exceeding threshold, i.e.

producing a trigger, indicates the presence of a bursting or transient

source from a region of the sky where previously none existed – or

if it did, its brightness was below the threshold of detectability. De-

pending on the context, the primary goal may be to trigger as soon as

possible, or with the greatest certainty (minimizing false detections or

maximizing the detection rate for weak signals).
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Figure 12: Direct comparison of on-board trigger times determined in real time by BATSE vs.
those from the real-time mode of the algorithm described here. Points are shown for 367 short
bursts where the BB representation consisted of at least two blocks, with the rate in the second
block exceeding that in the first block.

The algorithm proposed here is simply the real-time mode of the

optimal partition algorithm. It avoids the need to invoke event rate
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thresholds at all, and can be thought of as a scheme for detecting

the first time the data present evidence for non-constancy, based on

the know statistical distribution of the observational noise. Figure

12 compares the real-time triggers from the BATSE experiment (and

recorded as part of the data structures available from HEASARC)

with those from the real-time mode of our algorithm. Note that the

BB trigger is systematically about 0.07 seconds earlier than the one

determined on board the spacecraft.

A slightly more ambitious task might be to show the development

over time of the structure of the signal – not just its first outburst. This

differs from retrospective analysis of time series data only in that at a

given time only the data up to that time are available. The estimated

structure shortly before the end of the data interval at a given time

may change, due the recently acquired data. Again, the real time mode

of our algorithm can deal with this situation.
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6 Appendix A: MatLab Code

This section contains MatLab9 code for the analysis tools. The func-

tion fit evaluates the natural logarithm of the fitness function, and

reverse reverses the order of an array. The quantity eps is the small-

est number representable on the current machine. All other constructs

and functions are standard MatLab.

6.1 Main Program

These code listings can be used to recreate Figure 6.

6.2 Construct Data Cells

6.3 Global Optimum

6.4 Load TTE Data

6.5 Logarithm of the Posterior Probability

6.6 Plot partitions

6.7 Plot TTE partitions

9 c© the Mathworks, Inc.
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6.8 Reverse (from WaveLab)

This simple script for reversing row or column vectors is taken from WaveLab.

function r = reverse(x)
% reverse -- Reverse order of elements in 1-d signal
% Usage
% r = reverse(x)
% Inputs
% x 1-d signal
% Outputs
% r 1-d time-reversed signal
%
% See Also
% flipud, fliplr
%

r = x(length(x):-1:1);

%
% Copyright (c) 1993. David L. Donoho
%
%
% Part of WaveLab Version .701
% Built Tuesday, January 30, 1996 8:25:59 PM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@playfair.stanford.edu
%
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6.9 Maximum Likelihood Histogram: ml hist.m

The following script implements the maximum likelihood optimal histogram for data ordered
and in the form of a MatLab row vector, as described in §5.5. It is much the same as the set
of scripts for blocking point data, §4.1.1, except that it has been written as a single “plug-and-
play” script. The only function that is not standard in recent versions of MatLab is reverse,
an almost trivial function that reverses vectors (see above).

function [ change_points, rates ] = ml_hist( xx, ncp_prior )
% function [ change_points, rates ] = ml_hist( xx, ncp_prior )
%---------------------------------------------------------------------------------------
% Compute optimal histogram of data: maximum likelihood partition of data interval
%
% Input: xx -- input data, must satisfy these constraints:
% (1) must be a row vector ( 1 x N )
% (2) must be ordered
%
% ncp_prior -- parameter in geometric prior on number of changepoints;
% optional [if not entered, default value
% 1.59 log_10( N ) - 0.05 is used]
%
% Output:
%
% change_points -- array of changepoint locations (index of xx)
% rates -- array of event rates in the blocks/bins
%
%----------------------------------------------------------------------------------------

[ dum, num_xx ] = size( xx );

% The next 2 lines can be omitted if the conditions are known to be true:
if dum ~= 1; xx = xx’;end % If column vector, convert to row vector
xx = sort( xx ); % Order data

if nargin < 2
ncp_prior = 1.59 * log10( num_xx ) - 0.45; % default value

end

%------------------------------------------------
% Put any identical values in a single cell
%------------------------------------------------
cell_pops = ones( size( xx ) ); % Initialize: one datum per cell

for id = num_xx: -1: 2
if xx( id ) == xx( id - 1 )

cell_pops( id - 1 ) = cell_pops( id - 1 ) + cell_pops( id );



6 APPENDIX A: MATLAB CODE 56

xx( id ) = [];pops( id ) = []; % eradicate old cell
end

end

%-------------------------------------------------
% Assign cell boundaries: data midpoints
%-------------------------------------------------

dx = diff( xx );
num_dx = length( dx );

cell_size = [dx(1) 0.5*( dx(1:num_dx-1) + dx(2:num_dx) ) dx(num_dx)];

%--------------------------------------------------------------
% Find optimal partition
%--------------------------------------------------------------

best = []; % "best(R)" is the value of the optimum at iteration R
last = []; % "last(R)" is the index at which this optimum occurs

%----------------------------------------------------
% Start with the first datum (R=1);
% add the next one at each iteration
%----------------------------------------------------

num_cells = length( cell_size );

for R = 1:num_cells

cum_cell_size = cumsum( reverse( cell_size(1:R) ) );
cum_cell_pops = cumsum( reverse( cell_pops(1:R) ) );

log_prob = cum_cell_pops .* ... % Maximum likelihood cost
( log( cum_cell_pops ) - log( cum_cell_size ) - 1 ) ...

- ncp_prior;

[ best(R), last(R) ] = max( [0 best] + reverse( log_prob ) );

end

%------------------------------------
% Locate the changepoints
%------------------------------------

index = last( num_cells );
change_points = [];
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while index > 1
change_points = [ index change_points ];
index = last( index - 1 );

end

%------------------------------------
% Count data in the blocks
%------------------------------------

num_cp = length( change_points );
num_blocks = num_cp + 1;
rates = zeros( num_blocks, 1 );

for id_cp = 1:num_blocks

if id_cp == 1
ii_1 = 1;

else
ii_1 = change_points( id_cp - 1 );

end

if id_cp >= num_cp
ii_2 = num_xx;

else
ii_2 = change_points( id_cp );

end

num_events = ii_2 - ii_1 + 1;
delt_xx = xx( ii_2 ) - xx( ii_1 );

if delt_xx == 0
rates( id_cp ) = 0; % does not normally occur

else
rates( id_cp ) = num_events / delt_xx;

end

end
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